• Home
  • About us
  • People
  • Research
    • Projects >
      • Macro-scale drivers of Coastal Wetland Extent
      • Self-organization of karst wetlands and landscapes: Big Cypress Preserve
      • Landscape Resilience in the Florida Everglades
      • Urban Homogenization
      • StreamPULSE: Continental Scale Analysis of River Metabolism
      • Urban land use
      • Florida Springs
      • Sonoran Desert Wetlands
    • Topics >
      • River metabolism and nutrient cycling
      • Wetland resilience
      • Urban Ecosystems
    • Facilities
  • Teaching
    • Stream Ecology Syllabus
    • Ecological Resilience and Ecosystem Management Syllabus
    • Urban Ecology Syllabus
  • Publications
  • Joining the Lab
    • Positions currently available
    • MEMs in the lab
  • Links
  • Contact Dr. Heffernan
The Heffernan Lab at Duke University

Oxygen, snails, and algae - new paper on Florida Springs

7/8/2014

 
The first chapter Dina Liebowitz's dissertation work is now available online in Freshwater Biology.  This paper examines the relationships among environmental conditions (especially dissolved oxygen concentrations), the abundance of grazing snails, and the presence of benthic algae in Florida springs. By comparing data from field surveys both within and across springs, Dina showed that the abundance of snails (especially the genus Elimia) is the primary determinant of the abundance of algae in Florida springs.   In addition, we found that algal abundance is generally either very high or very low, a pattern that is consistent with alternative stable states.  Finally, our field survey also shows that oxygen concentrations, among other environmental controls, influences the abundance of snails.  Putting these findings together, we suggest that even temporary declines in oxygen concentrations, which occur commonly in springs, could suppress snail populations and activity and allow algae to escape grazer control.   

Most of the management attention in springs has emphasized nutrient concentrations as the major driver of algal mats, a hypothesis which we have challenged pretty strongly in an earlier paper that first articulated the oxygen-grazer-algae cascade. Dina's other chapters examine these processes experimentally, and lead to similar conclusions.  Very exciting to have this work out, and congratulations Dina!

    Welcome!

    This is the homepage of the Heffernan Lab at Duke University.  Here you can find all sorts of information about our research, teaching, and outreach.  If you have any questions, contact Dr. Heffernan.

    Picture

    Dr. Jim Heffernan

    I am an Assistant Professor in the Nicholas School of the Environment at Duke University.  My research is focused on the causes and consequences of major changes in ecosystem structure, mostly in streams and wetlands.

    Archives

    May 2018
    December 2017
    July 2017
    November 2015
    March 2015
    December 2014
    November 2014
    August 2014
    July 2014
    June 2014
    May 2014
    April 2014
    March 2014
    February 2014
    January 2014
    December 2013
    October 2013
    September 2013
    August 2013
    May 2013
    April 2013
    March 2013
    February 2013
    January 2013
    November 2012
    October 2012
    September 2012
    June 2012
    May 2012
    April 2012
    March 2012

    Categories

    All
    Academics
    Big Cypress
    Collaboration
    Desert
    Eno River
    Everglades
    Funding
    Honors And Awards
    Hydrography
    Living In Durham
    Macrosystems
    Meetings
    New Hope Creek
    New Members
    Nitrogen
    Nsf
    Phosphorus
    Press
    Publications
    Resilience
    Review
    Sensors
    Silliness
    Springs
    Students
    Urban
    Visitors
    Welcome!
    Wetlands

    RSS Feed

Powered by Create your own unique website with customizable templates.